In a linear instrumental variables (IV) setting for estimating the causal effects of multiple confounded exposure/treatment variables on an outcome, we investigate the adaptive Lasso method for selecting valid instrumental variables from a set of available instruments that may contain invalid ones. An instrument is invalid if it fails the exclusion conditions and enters the model as an explanatory variable. We extend the results as developed in Windmeijer et al. (2019) for the single exposure model to the multiple exposures case. In particular we propose a median-of-medians estimator and show that the conditions on the minimum number of valid instruments under which this estimator is consistent for the causal effects are only moderately stronger than the simple majority rule that applies to the median estimator for the single exposure case. The adaptive Lasso method which uses the initial median-of-medians estimator for the penalty weights achieves consistent selection with oracle properties of the resulting IV estimator. This is confirmed by some Monte Carlo simulation results. We apply the method to estimate the causal effects of educational attainment and cognitive ability on body mass index (BMI) in a Mendelian Randomization setting.
翻译:在一个线性工具变量(IV)中,为估计多重混杂接触/处理变量对结果的因果关系而设定的线性工具变量(IV)中,我们调查了从可能含有无效变量的一组现有仪器中选择有效工具变量的适应性拉索方法。如果仪器不符合排除条件,则该仪器无效,并作为一个解释变量进入模型。我们将Windmeijer等人(2019年)为单一接触模型开发的结果扩展至多个暴露模型的单一暴露模型。我们特别提议了一个中位估测器,并表明该估计器在因果效果上保持一致的有效工具最低数量的条件,仅比适用于单一暴露案例中位估量的简单多数规则要强一些。使用最初中位中间媒介测算器计算罚款重量的适应性拉索方法,与由此生成的四度估量器的大小特性一致。这得到蒙特卡洛一些模拟结果的确认。我们采用这种方法来估计门德利兰理理理理理理学定定定定时,教育成就和认知能力对身体质量指数(BMI)的因果关系。