We consider Bayesian inference of sparse covariance matrices and propose a post-processed posterior. This method consists of two steps. In the first step, posterior samples are obtained from the conjugate inverse-Wishart posterior without considering the sparse structural assumption. The posterior samples are transformed in the second step to satisfy the sparse structural assumption through the hard-thresholding function. This non-traditional Bayesian procedure is justified by showing that the post-processed posterior attains the optimal minimax rates. We also investigate the application of the post-processed posterior to the estimation of the global minimum variance portfolio. We show that the post-processed posterior for the global minimum variance portfolio also attains the optimal minimax rate under the sparse covariance assumption. The advantages of the post-processed posterior for the global minimum variance portfolio are demonstrated by a simulation study and a real data analysis with S&P 400 data.
翻译:我们认为,贝叶斯的推论是稀疏的共变矩阵,并提议了一个后处理的后后后附体。 这种方法由两步组成。 第一步, 在不考虑稀疏结构假设的情况下, 从反Wishart的后附体中获取后附体样本。 第二步, 后生样本转换以满足稀疏的结构假设, 通过硬藏功能满足稀疏的结构假设。 这个非传统的巴伊西亚程序证明, 后处理的后后后后后附体达到最佳微缩成像率。 我们还调查了后处理后后后后后后后后后后后后后附体对全球最低差异组合组合的估算应用情况。 我们显示, 后处理后全球最低差异组合的后后后后后后后后后附体也达到了稀释变异假设下的最佳微增轴法率。 后后后后后后后后后后后后后附体对全球最低差异组合的优势通过模拟研究和S & P 400数据的实际数据分析来证明。