The Regression Discontinuity (RD) design is one of the most widely used non-experimental methods for causal inference and program evaluation. Over the last two decades, statistical and econometric methods for RD analysis have expanded and matured, and there is now a large number of methodological results for RD identification, estimation, inference, and validation. We offer a curated review of this methodological literature organized around the two most popular frameworks for the analysis and interpretation of RD designs: the continuity framework and the local randomization framework. For each framework, we discuss three main areas: (i) designs and parameters, which focuses on different types of RD settings and treatment effects of interest; (ii) estimation and inference, which presents the most popular methods based on local polynomial regression and analysis of experiments, as well as refinements, extensions and other methods; and (iii) validation and falsification, which summarizes an array of mostly empirical approaches to support the validity of RD designs in practice.
翻译:Regression Discondition(RD)设计是用于因果关系推断和方案评价的最广泛使用的非实验性方法之一。在过去20年中,用于RD分析的统计和计量经济学方法已经扩大和成熟,现在在RD识别、估计、推断和验证方面有大量方法结果。我们围绕两个最受欢迎的分析和解释RD设计的框架,即连续性框架和地方随机化框架,对这一方法文献进行整理性审查。我们讨论每个框架的三个主要领域:(一) 设计和参数,侧重于不同类型的RD设置和感兴趣的治疗效果;(二) 估计和推论,根据当地多面回归和分析实验以及改进、扩展和其他方法,提出了最受欢迎的方法;(三) 验证和伪造,其中概述了支持RD设计在实践中的有效性的多为经验性的方法。