The Latent River Problem has emerged as a flagship problem for causal discovery in extreme value statistics. This paper gives QTree, a simple and efficient algorithm to solve the Latent River Problem that outperforms existing methods. QTree returns a directed graph and achieves almost perfect recovery on the Upper Danube, the existing benchmark dataset, as well as on new data from the Lower Colorado River in Texas. It can handle missing data, has an automated parameter tuning procedure, and runs in time $O(n |V|^2)$, where $n$ is the number of observations and $|V|$ the number of nodes in the graph. In addition, under a Bayesian network model for extreme values with propagating noise, we show that the QTree estimator returns for $n\to\infty$ a.s. the correct tree.
翻译:长河问题已成为极端价值统计中因果发现的首要问题。 本文给出了QTree, 这是一种简单而高效的算法, 用以解决长河问题, 其效果超过了现有方法。 QTree 返回了一个定向图表, 并实现了在上多瑙河、 现有基准数据集以及德克萨斯州下科罗拉多河新数据方面的几乎完美的恢复。 它可以处理缺失的数据, 拥有自动参数调试程序, 并按时间运行 $O (n ⁇ V ⁇ 2), 其中, $n是观测数, $+V ⁇ $ 。 此外, 在Bayesian网络模型下, 使用传播噪音的极端值, 我们显示 QTree 估计数返回$nto\ infty$ a. s. s. 正确的树 。