The estimation of repeatedly nested expectations is a challenging task that arises in many real-world systems. However, existing methods generally suffer from high computational costs when the number of nestings becomes large. Fix any non-negative integer $D$ for the total number of nestings. Standard Monte Carlo methods typically cost at least $\mathcal{O}(\varepsilon^{-(2+D)})$ and sometimes $\mathcal{O}(\varepsilon^{-2(1+D)})$ to obtain an estimator up to $\varepsilon$-error. More advanced methods, such as multilevel Monte Carlo, currently only exist for $D = 1$. In this paper, we propose a novel Monte Carlo estimator called $\mathsf{READ}$, which stands for "Recursive Estimator for Arbitrary Depth.'' Our estimator has an optimal computational cost of $\mathcal{O}(\varepsilon^{-2})$ for every fixed $D$ under suitable assumptions, and a nearly optimal computational cost of $\mathcal{O}(\varepsilon^{-2(1 + \delta)})$ for any $0 < \delta < \frac12$ under much more general assumptions. Our estimator is also unbiased, which makes it easy to parallelize. The key ingredients in our construction are an observation of the problem's recursive structure and the recursive use of the randomized multilevel Monte Carlo method.
翻译:在许多现实世界系统中,反复嵌套的期望估算是一项具有挑战性的任务。 但是, 当巢数大时, 现有方法通常会面临高昂的计算成本。 修正任何非负整数的整数$D$, 目前只有$D= 1 。 标准蒙特卡洛 方法通常至少花费$\ mathcal{ O} (\\ varepsilon_ (2+D)}) $, 有时甚至花费$\ mathcal{ O} (\ varepsilon_ 2( 1+D)} 。 然而, 当巢数数量大时, 现有方法通常会面临高昂的计算成本。 更先进的方法, 如多层次的蒙特卡洛, 目前只有$= 1美元。 在本文中, 标准蒙特卡洛 估计器通常成本至少为$\ fremall 。 我们的测算成本最优( \ varreallon) $( =2) 和每个固定的计算成本最优的O= dal_loral_lalal_lal____lation$)。