We propose a novel hybrid quantum computing strategy for parallel MCMC algorithms that generate multiple proposals at each step. This strategy makes the rate-limiting step within parallel MCMC amenable to quantum parallelization by using the Gumbel-max trick to turn the generalized accept-reject step into a discrete optimization problem. When combined with new insights from the parallel MCMC literature, such an approach allows us to embed target density evaluations within a well-known extension of Grover's quantum search algorithm. Letting $P$ denote the number of proposals in a single MCMC iteration, the combined strategy reduces the number of target evaluations required from $\mathcal{O}(P)$ to $\mathcal{O}(P^{1/2})$. In the following, we review the rudiments of quantum computing, quantum search and the Gumbel-max trick in order to elucidate their combination for as wide a readership as possible.


翻译:我们提出了一种新的混合量子计算策略,用于并行 MCMC 算法,该算法在每一步产生多个提议。该策略通过使用 Gumbel-max 技巧将广义接受-拒绝步骤转化为离散优化问题,使并行 MCMC 中的瓶颈步骤易于量子并行化。与并行 MCMC 文献中的新见解相结合,这种方法允许我们将目标密度评估嵌入格罗弗量子搜索算法的一个广为人知的扩展中。让 $P$ 表示单个 MCMC 迭代中的提议数量,组合策略将所需的目标评估数从 $\mathcal {O} (P)$ 降低到 $\mathcal {O} (P ^ {1/2})$。在下文中,我们回顾量子计算、量子搜索和 Gumbel-max 技巧的基本知识,以便让尽可能广泛的读者理解其组合。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
85+阅读 · 2020年12月5日
专知会员服务
53+阅读 · 2020年9月7日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月10日
Arxiv
0+阅读 · 2023年5月10日
Arxiv
0+阅读 · 2023年5月9日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员