Near-term quantum systems are noisy. Crosstalk noise has been identified as one of the major sources of noises in superconducting Noisy Intermediate-Scale Quantum (NISQ) devices. Crosstalk arises from the concurrent execution of two-qubit gates, such as \texttt{CX}, on nearby qubits. It may significantly increase the error rate of gates compared to running them individually. Crosstalk can be mitigated through scheduling or hardware tuning. Prior studies, however, handle crosstalk at a very late stage in the compilation later, typically after hardware mapping is done. It might miss great opportunities of optimizing algorithm logic, routing, and crosstalk at the same time. In this paper, we push the envelope by considering all these factors simultaneously at the very early compilation stage. We propose a crosstalk-aware quantum program compilation framework called CQC that can enhance crosstalk-mitigation while achieving satisfactory circuit depth. Moreover, we identify opportunities for translation from intermediate representation to the circuit for application-specific crosstalk mitigation, for instance, the \texttt{CX} ladder construction in variational quantum eigensolvers (VQE). Evaluations through simulation and on real IBM-Q devices show that our framework can significantly reduce the error rate by up to 6$\times$, with only $\sim$60\% circuit depth compared to state-of-the-art gate scheduling approaches. In particular for VQE, we demonstrate 49\% circuit depth reduction with 9.6\% fidelity improvement over prior art on the H4 molecule using IBMQ Guadalupe. Our CQC framework will be released on GitHub.


翻译:近距离量子系统十分吵闹。 交叉尾声已被确定为超导中度量子( NASQ) 设备中超导中度量子( NISQ) 中度量子( NISQ) 中度量子设备的主要噪音来源之一。 交叉尾声来自同时在附近的quits 上同时执行双Qit门( 如\ texttt{ CX} ) 。 这可能会大大提高门的误差率。 交叉声波可以通过时间表或硬件调制来缓解门的误差率。 但是, 先前的研究发现, 在编集的非常晚的阶段处理交叉声波, 通常是在硬件绘图完成后处理。 它可能会错过优化算法逻辑、 路流和交叉声道( NIC+X) 在早期编集阶段同时考虑所有这些因素, 我们提议一个交叉声量量量子程序汇编框架框架, 它可以提高交叉声调速度, 同时达到电路深度。 此外, 我们发现从中间代表到应用特定的电路路流, 例如, 6Cxxxx) 梯结构结构构造将显示我们真实深度框架的降为 QQ。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月7日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员