At its core, generative modeling seeks to uncover the underlying factors that give rise to observed data that can often be modelled as the natural symmetries that manifest themselves through invariances and equivariances to certain transformations laws. However, current approaches are couched in the formalism of continuous normalizing flows that require the construction of equivariant vector fields -- inhibiting their simple application to conventional higher dimensional generative modelling domains like natural images. In this paper we focus on building equivariant normalizing flows using discrete layers. We first theoretically prove the existence of an equivariant map for compact groups whose actions are on compact spaces. We further introduce two new equivariant flows: $G$-coupling Flows and $G$-Residual Flows that elevate classical Coupling and Residual Flows with equivariant maps to a prescribed group $G$. Our construction of $G$-Residual Flows are also universal, in the sense that we prove an $G$-equivariant diffeomorphism can be exactly mapped by a $G$-residual flow. Finally, we complement our theoretical insights with experiments -- for the first time -- on image datasets like CIFAR-10 and show $G$-Equivariant Discrete Normalizing flows lead to increased data efficiency, faster convergence, and improved likelihood estimates.


翻译:基因模型的核心是,试图揭示产生观测数据的基本因素,这些数据通常可以仿照自然对称图,这些自然对称图通过某些变法法的异差和等差表现出来。然而,目前的方法体现于持续正常流流的正规化形式,这需要建造等离异矢量场 -- -- 禁止将其简单应用到传统的更高维的变异模型领域,如自然图像。在本文件中,我们的重点是利用离散层建立等离散的正常流。我们首先在理论上证明存在一个在紧凑空间采取行动的紧凑集团的等异差图。我们进一步引入了两种新的等差流:美元对等流和美元对等流,这些流动需要建造等异矢量矢量的矢量场,这些流动需要建造等离异矢量的矢量的矢量场和剩余流。我们用美元对等异差流的构建也是普遍的,从这个意义上说,我们证明存在一种在紧缺量的变异性变差图,我们可以用一个G$的变差图像来精确地绘制出我们的正正正正比值,而更接近的变异的模型,最后,以显示平比平极的变流。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
83+阅读 · 2021年12月9日
专知会员服务
25+阅读 · 2021年4月13日
【干货书】机器学习速查手册,135页pdf
专知会员服务
124+阅读 · 2020年11月20日
专知会员服务
158+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
Normalizing Flows入门(上)
AINLP
6+阅读 · 2020年8月1日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月10日
Arxiv
0+阅读 · 2021年12月8日
Arxiv
0+阅读 · 2021年12月7日
Arxiv
8+阅读 · 2021年2月19日
VIP会员
相关资讯
Normalizing Flows入门(上)
AINLP
6+阅读 · 2020年8月1日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员