Spectral analysis is a powerful tool, decomposing any function into simpler parts. In machine learning, Mercer's theorem generalizes this idea, providing for any kernel and input distribution a natural basis of functions of increasing frequency. More recently, several works have extended this analysis to deep neural networks through the framework of Neural Tangent Kernel. In this work, we analyze the layer-wise spectral bias of Deep Neural Networks and relate it to the contributions of different layers in the reduction of generalization error for a given target function. We utilize the properties of Hermite polynomials and spherical harmonics to prove that initial layers exhibit a larger bias towards high-frequency functions defined on the unit sphere. We further provide empirical results validating our theory in high dimensional datasets for Deep Neural Networks.


翻译:光谱分析是一个强大的工具, 将任何功能分解成更简单的部分。 在机器学习中, Mercer 的理论概括了这个想法, 规定任何内核和输入分布都是频率不断提高的功能的自然基础。 最近, 一些作品通过神经唐氏内核框架将这一分析扩展至深神经网络。 在这项工作中, 我们分析了深神经网络的分层光谱偏差, 并将其与不同层在减少特定目标函数的概括误差方面的贡献联系起来。 我们利用Hermite 多元球和球体口音的特性来证明初始层对单位域定义的高频函数表现出更大的偏向性。 我们还提供了在深海神经网络高维数据集中验证我们理论的经验结果 。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
125+阅读 · 2021年6月4日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年2月13日
Arxiv
5+阅读 · 2018年5月31日
VIP会员
相关资讯
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员