A service robot serving safely and politely needs to track the surrounding people robustly, especially for Tour-Guide Robot (TGR). However, existing multi-object tracking (MOT) or multi-person tracking (MPT) methods are not applicable to TGR for the following reasons: 1. lacking relevant large-scale datasets; 2. lacking applicable metrics to evaluate trackers. In this work, we target the visual perceptual tasks for TGR and present the TGRDB dataset, a novel large-scale multi-person tracking dataset containing roughly 5.6 hours of annotated videos and over 450 long-term trajectories. Besides, we propose a more applicable metric to evaluate trackers using our dataset. As part of our work, we present TGRMPT, a novel MPT system that incorporates information from head shoulder and whole body, and achieves state-of-the-art performance. We have released our codes and dataset in https://github.com/wenwenzju/TGRMPT.
翻译:一个安全和礼貌地服务于服务的机器人需要强有力地跟踪周围的人,特别是TGR。然而,现有的多对象跟踪(MOT)或多人跟踪(MPT)方法不适用于TGR,原因如下:1.缺乏相关的大型数据集;2.缺乏评估跟踪器的适用指标。在这项工作中,我们瞄准了TGR的视觉概念任务,并展示了TGRDB数据集,这是一个新型的大型多人跟踪数据集,包含约5.6小时的附加说明视频和超过450个长期轨迹。此外,我们提出了一个更适用的指标,用以利用我们的数据集评估跟踪器。作为我们工作的一部分,我们介绍了TGRMPT,这是一个包含头部和整个身体信息并实现最新性能的新型MPT系统。我们已经在 https://github.com/wenwenzju/TGRMPT发布了我们的代码和数据集。