Oriented normals are common pre-requisites for many geometric algorithms based on point clouds, such as Poisson surface reconstruction. However, it is not trivial to obtain a consistent orientation. In this work, we bridge orientation and reconstruction in implicit space and propose a novel approach to orient point cloud normals by incorporating isovalue constraints to the Poisson equation. Our key observation is that when using a point cloud with consistently oriented normals as the input for implicit surface reconstruction, the indicator function values of the sample points should be close to the isovalue of the surface. Based on this observation and the Poisson equation, we propose an optimization formulation that combines isovalue constraints with local consistency requirements for normals. We optimize normals and implicit functions simultaneously and solve for a globally consistent orientation. Thanks to the sparsity of the linear system, our method can work on an average laptop with reasonable computational time. Experiments show that our method can achieve high performance in non-uniform and noisy data and manage varying sampling densities, artifacts, multiple connected components, and nested surfaces.
翻译:定向正常是基于点云的许多几何算法(如 Poisson 地表重建)的常见先决条件。 但是,获得一致方向并非微不足道。 在这项工作中,我们在隐蔽空间中连接方向和重建,并提议对点云常态采取新颖的办法,将等值限制纳入 Poisson 方程式。 我们的主要观察是,当使用一个有一贯方向正常的点云作为隐含表面重建的投入时,取样点的指标函数值应接近表面的等值。 根据这一观察和Poisson 方程式,我们建议一种优化的配方,将价值限制与当地对正常的一致要求结合起来。 我们优化正常和隐含功能,并同时解决全球一致方向问题。由于线性系统的宽度,我们的方法可以在平均的膝上工作,并且有合理的计算时间。 实验表明,我们的方法可以在非统一和噪音的数据中取得高性能,并管理不同的取样密度、手工艺品、多个连接的组件和嵌巢状表面。