Our goal is to produce methods for observational causal inference that are auditable, easy to troubleshoot, yield accurate treatment effect estimates, and scalable to high-dimensional data. We describe an almost-exact matching approach that achieves these goals by (i) learning a distance metric via outcome modeling, (ii) creating matched groups using the distance metric, and (iii) using the matched groups to estimate treatment effects. Our proposed method uses variable importance measurements to construct a distance metric, making it a flexible method that can be adapted to various applications. Concentrating on the scalability of the problem in the number of potential confounders, we operationalize our approach with LASSO. We derive performance guarantees for settings where LASSO outcome modeling consistently identifies all confounders (importantly without requiring the linear model to be correctly specified). We also provide experimental results demonstrating the auditability of matches, as well as extensions to more general nonparametric outcome modeling.
翻译:我们的目标是提出可审计、容易排除麻烦、产生准确的处理效果估计以及可与高维数据相适应的观察因果关系推断方法。我们描述了一种几乎十分精确的匹配方法,通过下列方式实现这些目标:(一) 通过成果模型学习远程测量,(二) 利用远程测量建立匹配组,(三) 利用匹配组来估计治疗效果。我们建议的方法使用不同的重要性测量方法来构建一个远程测量,使它成为可适应各种应用的灵活方法。我们集中关注问题在潜在聚合者数目中的可调整性,我们与LASSO一起实施我们的方法。我们为LASSO结果模型一致确定所有相融合者(基本上不需要正确指定线性模型)的环境提供绩效保障。我们还提供实验结果,表明匹配的可审计性,以及扩展到更一般性的非参数结果模型。