Active Domain Adaptation (ADA) queries the labels of a small number of selected target samples to help adapting a model from a source domain to a target domain. The local context of queried data is important, especially when the domain gap is large. However, this has not been fully explored by existing ADA works. In this paper, we propose a Local context-aware ADA framework, named LADA, to address this issue. To select informative target samples, we devise a novel criterion based on the local inconsistency of model predictions. Since the labeling budget is usually small, fine-tuning model on only queried data can be inefficient. We progressively augment labeled target data with the confident neighbors in a class-balanced manner. Experiments validate that the proposed criterion chooses more informative target samples than existing active selection strategies. Furthermore, our full method surpasses recent ADA arts on various benchmarks. Code is available at https://github.com/tsun/LADA.
翻译:主动域适应(ADA) 询问少数选定目标样本的标签,以帮助将模型从源域改成目标域。询问数据的当地背景很重要,特别是在领域差距很大的情况下。然而,现有的ADA工作尚未对此进行充分探讨。在本文中,我们提议了一个当地环境认知的ADA框架,名为LADA,以解决这一问题。为选择信息性目标样本,我们根据模型预测的当地不一致性设计了一个新标准。由于标签预算通常很小,只能查询的数据的微调模式可能无效。我们以等级平衡的方式逐步增加与自信邻居的标签目标数据。实验证实,拟议的标准选择的信息性目标样本比现有的积极选择战略要多。此外,我们的全部方法超过了最近关于各种基准的ADA艺术。代码可在https://github.com/tsun/LADADAD查阅。