Generative AI (GAI) offers unprecedented possibilities but its commercialization has raised concerns about transparency, reproducibility, bias, and safety. Many "open-source" GAI models lack the necessary components for full understanding and reproduction, and some use restrictive licenses, a practice known as "openwashing." We propose the Model Openness Framework (MOF), a ranked classification system that rates machine learning models based on their completeness and openness, following principles of open science, open source, open data, and open access. The MOF requires specific components of the model development lifecycle to be included and released under appropriate open licenses. This framework aims to prevent misrepresentation of models claiming to be open, guide researchers and developers in providing all model components under permissive licenses, and help companies, academia, and hobbyists identify models that can be safely adopted without restrictions. Wide adoption of the MOF will foster a more open AI ecosystem, accelerating research, innovation, and adoption.
翻译:暂无翻译