We use artificial intelligence (AI) to learn and infer the physics of higher order gravitational wave modes of quasi-circular, spinning, non precessing binary black hole mergers. We trained AI models using 14 million waveforms, produced with the surrogate model NRHybSur3dq8, that include modes up to $\ell \leq 4$ and $(5,5)$, except for $(4,0)$ and $(4,1)$, that describe binaries with mass-ratios $q\leq8$, individual spins $s^z_{\{1,2\}}\in[-0.8, 0.8]$, and inclination angle $\theta\in[0,\pi]$.Our probabilistic AI surrogates can accurately constrain the mass-ratio, individual spins, effective spin, and inclination angle of numerical relativity waveforms that describe such signal manifold. We compared the predictions of our AI models with Gaussian process regression, random forest, k-nearest neighbors, and linear regression, and with traditional Bayesian inference methods through the PyCBC Inference toolkit, finding that AI outperforms all these approaches in terms of accuracy, and are between three to four orders of magnitude faster than traditional Bayesian inference methods. Our AI surrogates were trained within 3.4 hours using distributed training on 1,536 NVIDIA V100 GPUs in the Summit supercomputer.
翻译:我们用人工智能(AI)来学习和推断高顺序重力波模式的物理,这些模式是准轴心、旋转的、非跨过的二进制黑洞合并。我们用1400万个气压模型对AI模型进行了培训,这些模型是用NRHYbSur3dq8的代用模型NRHYbybSur3dq8生产的,这些模型包括以美元=leq 4美元和美元(5,5,5美元)为单位,但美元(4,0美元)和(4,1美元)除外,这些模型描述的是质量拉比值($qleq8美元)、个人旋转1,2 美元[-0.8,0.8]美元,以及倾角角角 $\theta\h\ in,[0,\pi]美元。我们具有概率的AI模型可以准确地限制质量、个人旋转、有效旋转和数字相对波形波形波形波形波形波形波形波形波形波形波形波形波形波形波形波形波形波形波形波形波形波形波形波形波形波形波形波形波形图。我们用三种亚形图比亚图比亚图比亚图比亚图比基基基基基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底数