We use artificial intelligence (AI) to learn and infer the physics of higher order gravitational wave modes of quasi-circular, spinning, non precessing binary black hole mergers. We trained AI models using 14 million waveforms, produced with the surrogate model NRHybSur3dq8, that include modes up to $\ell \leq 4$ and $(5,5)$, except for $(4,0)$ and $(4,1)$, that describe binaries with mass-ratios $q\leq8$, individual spins $s^z_{\{1,2\}}\in[-0.8, 0.8]$, and inclination angle $\theta\in[0,\pi]$.Our probabilistic AI surrogates can accurately constrain the mass-ratio, individual spins, effective spin, and inclination angle of numerical relativity waveforms that describe such signal manifold. We compared the predictions of our AI models with Gaussian process regression, random forest, k-nearest neighbors, and linear regression, and with traditional Bayesian inference methods through the PyCBC Inference toolkit, finding that AI outperforms all these approaches in terms of accuracy, and are between three to four orders of magnitude faster than traditional Bayesian inference methods. Our AI surrogates were trained within 3.4 hours using distributed training on 1,536 NVIDIA V100 GPUs in the Summit supercomputer.


翻译:我们用人工智能(AI)来学习和推断高顺序重力波模式的物理,这些模式是准轴心、旋转的、非跨过的二进制黑洞合并。我们用1400万个气压模型对AI模型进行了培训,这些模型是用NRHYbSur3dq8的代用模型NRHYbybSur3dq8生产的,这些模型包括以美元=leq 4美元和美元(5,5,5美元)为单位,但美元(4,0美元)和(4,1美元)除外,这些模型描述的是质量拉比值($qleq8美元)、个人旋转1,2 美元[-0.8,0.8]美元,以及倾角角角 $\theta\h\ in,[0,\pi]美元。我们具有概率的AI模型可以准确地限制质量、个人旋转、有效旋转和数字相对波形波形波形波形波形波形波形波形波形波形波形波形波形波形波形波形波形波形波形波形波形波形波形波形波形波形波形波形波形图。我们用三种亚形图比亚图比亚图比亚图比亚图比基基基基基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底基底数

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年12月14日
Arxiv
0+阅读 · 2022年12月13日
Arxiv
0+阅读 · 2022年12月12日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员