In a network of reinforced stochastic processes [arXiv:2206.07514, arXiv:1607.08514], for certain values of the parameters, there exists a strictly positive probability that all the agents asymptotically polarize, i.e. they almost surely converge toward one (the same for all the agents) of the two extreme inclinations. This work aims to provide a suitable technique in order to estimate this probability, given the observation of the network until a certain time-step. The problem has been framed in the more general setting of a class of martingales taking values in [0, 1] and following a specific dynamics: the above probability of asymptotic polarization corresponds to the probability of touching the barriers {0, 1} in the limit. Therefore, the illustrated technique can also be applied in different contexts.
翻译:在一个强化的随机过程网络[arXiv:2206.07514,arXiv:1607.08514]中,对于参数的某些值来说,存在一种绝对肯定的概率,即所有物剂无症状地极化,即它们几乎肯定会向两个极端倾角的一个(所有物剂)集中。这项工作的目的是提供一种适当的技术,以便估计这一概率,考虑到对网络的观察直到一定的时间步骤。这个问题是在[0,1]和一种特定动态的比较一般的马丁酸类采集值设置中设置的:上面的无症状极化概率与在极限中触碰屏障的概率 {0,1}相对应。因此,说明的技术也可以在不同的情况下应用。