Extreme streamflow is a key indicator of flood risk, and quantifying the changes in its distribution under non-stationary climate conditions is key to mitigating the impact of flooding events. We propose a non-stationary process mixture model (NPMM) for annual streamflow maxima over the central US (CUS) which uses downscaled climate model precipitation projections to forecast extremal streamflow. Spatial dependence for the model is specified as a convex combination of transformed Gaussian and max-stable processes, indexed by a weight parameter which identifies the asymptotic regime of the process. The weight parameter is modeled as a function of region and of regional precipitation, introducing spatio-temporal non-stationarity within the model. The NPMM is flexible with desirable tail dependence properties, but yields an intractable likelihood. To address this, we embed a neural network within a density regression model which is used to learn a synthetic likelihood function using simulations from the NPMM with different parameter settings. Our model is fitted using observational data for 1972-2021, and inference carried out in a Bayesian framework. Annual streamflow maxima forecasts for 2021-2035 estimate an increase in the frequency and magnitude of extreme streamflow, with changes being more pronounced in the largest quantiles of the projected annual streamflow maxima.
翻译:极端流流是洪流风险的一个关键指标,量化其在非静止气候条件下分布的变化是减轻洪水事件影响的关键。我们建议美国中部地区每年流流流最大值采用非静止过程混合模型(NPMM),该模型使用降尺度气候模型降水量预测极端流流流。该模型的空间依赖性被指定为改造高山和最大流流流过程的组合,由确定该过程无症状体系的权重参数进行索引。加权参数以区域和区域降水函数为模型模型,在模型中引入垃圾-时空不常态的功能。NPAM具有适应性尾尾依赖特性的灵活性,但产生难以把握的可能性。为此,我们将神经网络嵌入一个密度回归模型,该模型用于利用来自国家空间机制的模拟和不同参数设置来学习合成的可能性功能。我们模型安装了1972-2021年的观测数据,并在Bayesian框架内进行推导。年度流流流流流流量最大预测,2035年流最大流量最大,预测为2021年流最大流量的最大流量。