In this paper, we revisit the class of iterative shrinkage-thresholding algorithms (ISTA) for solving the linear inverse problem with sparse representation, which arises in signal and image processing. It is shown in the numerical experiment to deblur an image that the convergence behavior in the logarithmic-scale ordinate tends to be linear instead of logarithmic, approximating to be flat. Making meticulous observations, we find that the previous assumption for the smooth part to be convex weakens the least-square model. Specifically, assuming the smooth part to be strongly convex is more reasonable for the least-square model, even though the image matrix is probably ill-conditioned. Furthermore, we improve the pivotal inequality tighter for composite optimization with the smooth part to be strongly convex instead of general convex, which is first found in [Li et al., 2022]. Based on this pivotal inequality, we generalize the linear convergence to composite optimization in both the objective value and the squared proximal subgradient norm. Meanwhile, we set a simple ill-conditioned matrix which is easy to compute the singular values instead of the original blur matrix. The new numerical experiment shows the proximal generalization of Nesterov's accelerated gradient descent (NAG) for the strongly convex function has a faster linear convergence rate than ISTA. Based on the tighter pivotal inequality, we also generalize the faster linear convergence rate to composite optimization, in both the objective value and the squared proximal subgradient norm, by taking advantage of the well-constructed Lyapunov function with a slight modification and the phase-space representation based on the high-resolution differential equation framework from the implicit-velocity scheme.


翻译:在本文中, 我们重新审视了迭代缩进算法( ISTA ) 的等级, 以解决在信号和图像处理过程中出现的、 信号和图像处理过程中出现的、 平滑表达式的线性反问题。 数字实验显示的是, 平滑表达式坐标的趋同行为倾向于线性, 而不是对调, 接近于平和。 仔细观察, 我们发现, 平滑部分的先前假设会减弱最差方形的模型。 具体地说, 假设平滑部分是强烈的正方形表达式, 对最差方形的模型比较合理。 尽管图像矩阵可能条件不完善。 此外, 我们改进了对平滑表达式坐标的趋同行为的趋近性, 而不是对正态的对等式。 基于这一关键不平等性的假设, 我们概括了在目标值和正向次正向次偏向下标中, 我们设置了一个简单不平滑的直流表达式表达式直径直线性表达式的矩阵, 对准的直径直径直线性正正正正正正正平平平平平平平平的基的基结构结构结构, 使原平平平平平平平平平平平平平平平平平平平的基的基的基的基底基底基底基底基底基底基底基底基底基,,, 基底的 基底的 基底基底的 基底的对基底的对基底的 基底的 基底的 基底的对基底基底基底基底的 基的 基底基的 基底的 基的 基底的 基的 基的 基的 基的 基的 基的 基的 基的 基的 基的 基的 基的 基的 基的 基的 基的 基的 基的 基的 基的 基的 基的 基的 基的 基的 基的 基的 基的 基的 基的 基的 基的 基的 基的 基的 基的 基的 基的 基的 基的 基的 基的 基的 基的

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员