Explanatory Interactive Learning (XIL) collects user feedback on visual model explanations to implement a Human-in-the-Loop (HITL) based interactive learning scenario. Different user feedback types will have different impacts on user experience and the cost associated with collecting feedback since different feedback types involve different levels of image annotation. Although XIL has been used to improve classification performance in multiple domains, the impact of different user feedback types on model performance and explanation accuracy is not well studied. To guide future XIL work we compare the effectiveness of two different user feedback types in image classification tasks: (1) instructing an algorithm to ignore certain spurious image features, and (2) instructing an algorithm to focus on certain valid image features. We use explanations from a Gradient-weighted Class Activation Mapping (GradCAM) based XIL model to support both feedback types. We show that identifying and annotating spurious image features that a model finds salient results in superior classification and explanation accuracy than user feedback that tells a model to focus on valid image features.
翻译:解释性互动学习(XIL) 收集用户对视觉模型解释的反馈,以实施基于人类在Loop(HITL)的交互式学习情景。不同的用户反馈类型将对用户经验和与收集反馈相关的费用产生不同影响,因为不同的反馈类型涉及不同程度的图像说明。虽然使用XIL来提高多个领域的分类性能,但不同用户反馈类型对模型性能和解释准确性的影响研究不够。为了指导未来的XIL工作,我们比较了图像分类任务中两种不同用户反馈类型的有效性:(1) 指示一种算法忽略某些虚假图像特征,(2) 指示一种算法侧重于某些有效的图像特征。我们使用基于XIL的加权分级活动映射(GradCAM) 模型的解释来支持这两种反馈类型。我们表明,识别并注明一个模型发现在高分级分类和解释准确性方面优于显示模式的用户反馈的显著结果,而用户反馈则指以有效的图像特征为重点。