When designing Convolutional Neural Networks (CNNs), one must select the size of the convolutional kernels before training. Recent works show CNNs benefit from different kernel sizes at different layers, but exploring all possible combinations is unfeasible in practice. A more efficient approach is to learn the kernel size during training. However, existing works that learn the kernel size have a limited bandwidth. These approaches scale kernels by dilation, and thus the detail they can describe is limited. In this work, we propose FlexConv, a novel convolutional operation with which high bandwidth convolutional kernels of learnable kernel size can be learned at a fixed parameter cost. FlexNets model long-term dependencies without the use of pooling, achieve state-of-the-art performance on several sequential datasets, outperform recent works with learned kernel sizes, and are competitive with much deeper ResNets on image benchmark datasets. Additionally, FlexNets can be deployed at higher resolutions than those seen during training. To avoid aliasing, we propose a novel kernel parameterization with which the frequency of the kernels can be analytically controlled. Our novel kernel parameterization shows higher descriptive power and faster convergence speed than existing parameterizations. This leads to important improvements in classification accuracy.
翻译:设计进化神经网络时, 必须在培训前选择进化内核的大小。 最近的工作显示有线电视新闻网在不同层次的不同内核大小上获益于不同的内核, 但探索所有可能的组合在实践上是行不通的。 一个更有效的方法是在培训期间学习内核大小。 但是, 学习内核大小的现有工程的带宽有限。 这些通过演算而采用规模内核, 由此可以描述的细节有限 。 在这项工作中, 我们提议Flex Conv, 这是一种新型的进化操作, 可以通过固定参数成本来学习高带内核内核大小的进化内核。 FlexNet 模型长期依赖使用集合的方式来学习内核大小。 在几个连续的数据集上, 实现最先进的性性能表现, 超越最近与所学内核内核大小相比, 并且与在图像基准数据集上更深得多的ResNet具有竞争力。 此外, 弹性网络可以部署在比在培训期间所看到的更高的分辨率高的内核内核内核内核内层内层内, 我们建议以新的变速化速度显示我们现有的变速化。