Quantum subspace diagonalization methods are an exciting new class of algorithms for solving large scale eigenvalue problems using quantum computers. Unfortunately, these methods require the solution of an ill-conditioned generalized eigenvalue problem, with a matrix pencil corrupted by a non-negligible amount of noise that is far above the machine precision. Despite pessimistic predictions from classical perturbation theories, these methods can perform reliably well if the generalized eigenvalue problem is solved using a standard truncation strategy. We provide a theoretical analysis of this surprising phenomenon, proving that under certain natural conditions, a quantum subspace diagonalization algorithm can accurately compute the smallest eigenvalue of a large Hermitian matrix. We give numerical experiments demonstrating the effectiveness of the theory and providing practical guidance for the choice of truncation level.
翻译:量子子空间二进制方法是一种令人兴奋的新型算法,用量子计算机解决大规模电子价值问题。 不幸的是,这些方法需要解决一个条件不完善的普遍电子价值问题,其基质铅笔被远远高于机器精确度的不可忽略的噪音所腐蚀。尽管古典扰动理论的悲观预测,但如果使用标准的脱轨战略解决普遍电子价值问题,这些方法可以发挥可靠的作用。我们对这种令人惊讶的现象进行了理论分析,证明在某些自然条件下,量子空间二进制算法可以准确地计算大赫米提亚矩阵最小的电子价值。我们进行数字实验,以证明理论的有效性,并为选择轨迹水平提供实用的指导。