The Solovay-Kitaev algorithm is a fundamental result in quantum computation. It gives an algorithm for efficiently compiling arbitrary unitaries using universal gate sets: any unitary can be approximated by short gates sequences, whose length scales merely poly-logarithmically with accuracy. As a consequence, the choice of gate set is typically unimportant in quantum computing. However, the Solovay-Kitaev algorithm requires the gate set to be inverse-closed. It has been a longstanding open question if efficient algorithmic compilation is possible without this condition. In this work, we provide the first inverse-free Solovay-Kitaev algorithm, which makes no assumption on the structure within a gate set beyond universality, answering this problem in the affirmative, and providing an efficient compilation algorithm in the absence of inverses for both $\text{SU}(d)$ and $\text{SL}(d, \mathbb{C})$. The algorithm works by showing that approximate gate implementations of the generalized Pauli group can self-correct their errors.
翻译:Solovay- Kitaev 算法是量子计算的一个根本结果。 它提供了一种使用通用门套有效编辑任意单词的算法: 任何单词都可以被短门序列所近似, 短门序列的长度尺度只是多对数的精确度。 因此, 在量子计算中, 选择门组通常并不重要 。 但是, Solovay- Kitaev 算法要求对门组进行反封闭。 如果没有这个条件, 有效算法汇编是可能的, 它是一个长期的未决问题 。 在这项工作中, 我们提供了第一个逆向的 Solovay- Kitaev 算法, 它无法对超出普遍性的门组的结构做出假设, 肯定地回答这个问题, 并在 $\ text{SU} (d) $ 和 $\ text{SL} (d,\mathb{C} ) 的情况下提供有效的汇编算法。 算法工作显示, 普通的保利集团的近似门应用可以自我纠正其错误 。