The guesswork quantifies the minimum number of queries needed to guess the state of a quantum ensemble if one is allowed to query only one state at a time. Previous approaches to the computation of the guesswork were based on standard semi-definite programming techniques and therefore lead to approximated results. In contrast, our main result is an algorithm that, upon the input of any qubit ensemble over a discrete ring and with uniform probability distribution, after finitely many steps outputs the exact closed-form analytic expression of its guesswork. The complexity of our guesswork-computing algorithm is factorial in the number of states, with a more-than-quadratic speedup for symmetric ensembles. To find such symmetries, we provide an algorithm that, upon the input of any point set over a discrete ring, after finitely many steps outputs its exact symmetries. The complexity of our symmetries-finding algorithm is polynomial in the number of points. As examples, we compute the guesswork of regular and quasi-regular sets of qubit states.
翻译:如果允许一个人一次只查询一个状态,则猜测数共度的质子状态需要最小的查询数量。 先前的猜测计算方法基于标准的半确定编程技术, 从而得出近似的结果。 相反, 我们的主要结果是一种算法, 在输入离散环上的任何Qbit 共和和和, 并且具有统一的概率分布, 在有限的许多步骤输出后, 我们的对称分析算法的精确封闭式分析表达其猜测工作。 我们的猜测- 计算算法的复杂性在州数中是因数性的, 在对称昆虫组群中, 我们用比二次的更快的速度来计算。 要找到这种对称, 我们提供一种算法, 在任何点输入离散环上的任何点后, 在有限的许多步骤输出后, 其精确的对称性。 我们的对称分析算法的复杂性在点数中是多式的。 作为示例, 我们计算了常规和准正态状态的猜算法。