In this paper, we formulate and study substructuring type algorithm for the Cahn-Hilliard (CH) equation, which was originally proposed to describe the phase separation phenomenon for binary melted alloy below the critical temperature and since then it has appeared in many fields ranging from tumour growth simulation, image processing, thin liquid films, population dynamics etc. Being a non-linear equation, it is important to develop robust numerical techniques to solve the CH equation. Here we present the formulation of Dirichlet-Neumann (DN) and Neumann-Neumann (NN) methods applied to CH equation and study their convergence behaviour. We consider the domain-decomposition based DN and NN methods in one and two space dimension for two subdomains and extend the study for multi-subdomain setting for NN method. We verify our findings with numerical results.
翻译:在本文中,我们为Cahn-Hilliard(CH)等式制定和研究亚结构算法,最初提出该算法是为了描述在临界温度之下二进制熔合金的分解现象,此后,该算法出现在许多领域,包括肿瘤生长模拟、图像处理、薄液体胶片、人口动态等。作为一个非线性方程,开发解决CH等式的可靠数字技术十分重要。这里我们介绍Dirichlet-Neumann(DN)和Neumann-Neumann(NNNN)方法的配方,并研究其趋同行为。我们考虑将基于DN和NNN方法的域分解法分为一个和两个空间层面,并将关于NN方法的多子层设置的研究扩大。我们用数字结果来核查我们的调查结果。