This paper presents a multi-scale method for convection-dominated diffusion problems in the regime of large P\'eclet numbers. The application of the solution operator to piecewise constant right-hand sides on some arbitrary coarse mesh defines a finite-dimensional coarse ansatz space with favorable approximation properties. For some relevant error measures, including the $L^2$-norm, the Galerkin projection onto this generalized finite element space even yields $\varepsilon$-independent error bounds, $\varepsilon$ being the singular perturbation parameter. By constructing an approximate local basis, the approach becomes a novel multi-scale method in the spirit of the Super-Localized Orthogonal Decomposition (SLOD). The error caused by basis localization can be estimated in an a-posteriori way. In contrast to existing multi-scale methods, numerical experiments indicate $\varepsilon$-independent convergence without preasymptotic effects even in the under-resolved regime of large mesh P\'eclet numbers.
翻译:本文展示了在大型 P\'eclet 数字体系中以对流为主的扩散问题的多尺度方法。 将解决方案操作员应用于某些任意粗略网状的右侧拼写常态的右侧, 定义了具有有利近似属性的有限维度的 ansatz 空间。 对于某些相关的错误测量, 包括$L$2$- norm, Galerkin 投影到这个普遍限值空间, 甚至产生 $\varepsilon$- 独立误差界限, $\varepsilon$ 是一个单度的扰动参数。 通过构建一个近似本地的基础, 这种方法在超本地化的 Orthogoal 解构( SLODD) 的精神下, 成为了一个新的多尺度方法。 基础本地化造成的错误可以用一个外观来估计。 与现有的多尺度方法相比, 数字实验表明 $\varepreslon$- 依赖的趋同, un- untimestemetictal traction traction sution of graphet in