The Wright--Fisher diffusion is important in population genetics in modelling the evolution of allele frequencies over time subject to the influence of biological phenomena such as selection, mutation, and genetic drift. Simulating paths of the process is challenging due to the form of the transition density. We present EWF, a robust and efficient sampler which returns exact draws for the diffusion and diffusion bridge processes, accounting for general models of selection including those with frequency-dependence. Given a configuration of selection, mutation, and endpoints, EWF returns draws at the requested sampling times from the law of the corresponding Wright--Fisher process. Output was validated by comparison to approximations of the transition density via the Kolmogorov--Smirnov test and QQ plots. All software is available at https://github.com/JaroSant/EWF
翻译:Wright-Fisher的传播在人口遗传学中非常重要,因为它模拟了受诸如选择、突变和遗传漂移等生物现象影响而随着时间推移等生物现象的演变过程。由于过渡密度的形式,模拟过程的路径具有挑战性。我们介绍了EWF, 这是一个强大而高效的取样器,它为扩散和传播桥梁过程返回精确的图纸,并计入了一般的选择模式,包括具有频率依赖性的选择模式。根据选择、突变和终点的配置,EWF的返回在所要求的取样时间从相应的Wright-Fisher过程的法律中提取。通过Kolmogorov-Smirov测试和块块,通过与过渡密度的近似值进行比较,对输出进行了验证。所有软件都可在https://github.com/JaroSant/EWF中查阅。