Indiscriminate data poisoning attacks aim to decrease a model's test accuracy by injecting a small amount of corrupted training data. Despite significant interest, existing attacks remain relatively ineffective against modern machine learning (ML) architectures. In this work, we introduce the notion of model poisonability as a technical tool to explore the intrinsic limits of data poisoning attacks. We derive an easily computable threshold to establish and quantify a surprising phase transition phenomenon among popular ML models: data poisoning attacks become effective only when the poisoning ratio exceeds our threshold. Building on existing parameter corruption attacks and refining the Gradient Canceling attack, we perform extensive experiments to confirm our theoretical findings, test the predictability of our transition threshold, and significantly improve existing data poisoning baselines over a range of datasets and models. Our work highlights the critical role played by the poisoning ratio, and sheds new insights on existing empirical results, attacks and mitigation strategies in data poisoning.


翻译:不加区分的数据中毒袭击旨在通过注入少量腐败培训数据来降低模型测试的准确性。尽管人们对现代机器学习架构的兴趣很大,但现有的袭击相对而言仍然相对无效。在这项工作中,我们引入了模型毒性概念,作为探索数据中毒袭击内在限度的技术工具。我们得出了一个容易计算的基本值,以便在流行的ML模型中确立和量化一个令人惊讶的阶段过渡现象:数据中毒袭击只有在中毒比率超过我们的临界值时才生效。我们在现有参数腐败袭击和完善逐步取消袭击的基础上,进行了广泛的实验,以证实我们的理论结论,测试我们过渡门槛的可预测性,并大大改进一系列数据集和模型的现有数据中毒基线。我们的工作强调了中毒比率所起的关键作用,并对数据中毒的现有实验结果、袭击和缓解战略提出了新的见解。</s>

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2020年12月10日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员