Test-time training adapts to a new test distribution on the fly by optimizing a model for each test input using self-supervision. In this paper, we use masked autoencoders for this one-sample learning problem. Empirically, our simple method improves generalization on many visual benchmarks for distribution shifts. Theoretically, we characterize this improvement in terms of the bias-variance trade-off.
翻译:测试时间培训通过优化使用自我监督的每个测试输入模型来适应在飞行上的新测试分布。 在本文中,我们使用蒙面自动代碼来应对这一一模一样的学习问题。 通常,我们简单的方法可以改善许多分布转移的视觉基准的概括化。 从理论上讲,我们用偏差取舍来描述这一改进。