In this work, we formulate a novel framework of adversarial robustness using the manifold hypothesis. Our framework provides sufficient conditions for defending against adversarial examples. We develop a test-time defense method with our formulation and variational inference. The developed approach combines manifold learning with the Bayesian framework to provide adversarial robustness without the need for adversarial training. We show that our proposed approach can provide adversarial robustness even if attackers are aware of existence of test-time defense. In additions, our approach can also serve as a test-time defense mechanism for variational autoencoders.
翻译:在这项工作中,我们利用多重假设,制定了新的对抗性强力框架。我们的框架为抵御对抗性例子提供了充分的条件。我们用我们的配方和变式推论,制定了试验时防御方法。发达的方法结合了贝叶斯框架的多种学习,以提供对抗性强力,而无需对抗性培训。我们表明,即使攻击者知道试验时防御的存在,我们提出的方法也可以提供对抗性强力。此外,我们的方法也可以作为变式自动调整器的试验时防御机制。