Inspired by recent results on self-avoiding inextensible curves, we propose and experimentally investigate a numerical method for simulating isometric plate bending without self-intersections. We consider a nonlinear two-dimensional Kirchhoff plate model which is augmented via addition of a tangent-point energy. The resulting continuous model energy is finite if and only if the corresponding deformation is injective, i.e. neither includes self-intersections nor self-contact. We propose a finite element method method based on discrete Kirchhoff triangles for the spatial discretization and employ a semi-implicit gradient descent scheme for the minimization of the discretized energy functional. Practical properties of the proposed method are illustrated with numerous numerical simulations, exploring the model behavior in different settings and demonstrating that our method is capable of preventing non-injective deformations.
翻译:受最近自我避免扩展曲线结果的启发,我们提议并实验性地调查模拟无自截面弯曲等离心板的数字方法。我们考虑的是非线性二维Kirchhoff板块模型,该模型通过增加正切点能量而扩大。由此产生的连续模型能量是有限的,如果而且只有在相应的变形是注射性的,即既不包括自截面,也不包括自接触。我们提议了一个以离散的Kirchhoff三角形为基础的有限元素方法,用于空间离散,并采用半隐性梯度梯度下降法,以尽量减少离散能量功能。提议的方法的实际特性通过无数数字模拟加以说明,探索不同环境中的模型行为,并表明我们的方法能够防止非定向变形。