A novel discretization is presented for forward-backward stochastic differential equations (FBSDE) with differentiable coefficients, simultaneously solving the BSDE and its Malliavin sensitivity problem. The control process is estimated by the corresponding linear BSDE driving the trajectories of the Malliavin derivatives of the solution pair, which implies the need to provide accurate $\Gamma$ estimates. The approximation is based on a merged formulation given by the Feynman-Kac formulae and the Malliavin chain rule. The continuous time dynamics is discretized with a theta-scheme. In order to allow for an efficient numerical solution of the arising semi-discrete conditional expectations in possibly high-dimensions, it is fundamental that the chosen approach admits to differentiable estimates. Two fully-implementable schemes are considered: the BCOS method as a reference in the one-dimensional framework and neural network Monte Carlo regressions in case of high-dimensional problems, similarly to the recently emerging class of Deep BSDE methods [Han et al. (2018), Hur\'e et al. (2020)]. An error analysis is carried out to show $L^2$ convergence of order $1/2$, under standard Lipschitz assumptions and additive noise in the forward diffusion. Numerical experiments are provided for a range of different semi- and quasi-linear equations up to $50$ dimensions, demonstrating that the proposed scheme yields a significant improvement in the control estimations.


翻译:对于具有不同系数的向前后方随机差异方程式(FBSDE),提出了新的离散化,同时解决了BSDE及其马利亚温敏感度问题。控制过程由相应的线性BSDE来估算,驱动解决方案对马利亚温衍生物的轨迹,这意味着需要提供准确的美元-伽马元估计数。近似以Feynman-Kac公式和Malliavin链条规则提供的合并配方为基础。连续的时间动态与一个The-scheme分解。为了在可能高的分层中为正在形成的半分解有条件期望找到有效的数字解决方案,所选择的方法必须接受不同的估计。两种完全可实施的办法是:BCOS方法作为一维框架和高度问题时的Neuroral 网络回归的参考,类似于最近出现的深BSDE方法的类别[Han 等(2018年),Hur\e'e 半分层条件层面的半分解度,为了在可能高的分层中实现半分解的半分解的预期值,选择方法必须接受不同的估计。一个完全的BOS方法作为一面框架框架的参考的参考级的递化,在1美元-L2号的正平级平级平级模型中进行一个向前平级的递化的递化法的递化。在1级的递算法的递化。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年12月2日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
65+阅读 · 2021年6月18日
Learning to Importance Sample in Primary Sample Space
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员