We study the problem of representing all distances between $n$ points in $\mathbb R^d$, with arbitrarily small distortion, using as few bits as possible. We give asymptotically tight bounds for this problem, for Euclidean metrics, for $\ell_1$ (a.k.a.~Manhattan) metrics, and for general metrics. Our bounds for Euclidean metrics mark the first improvement over compression schemes based on discretizing the classical dimensionality reduction theorem of Johnson and Lindenstrauss (Contemp.~Math.~1984). Since it is known that no better dimension reduction is possible, our results establish that Euclidean metric compression is possible beyond dimension reduction.
翻译:我们研究的是以美元表示一美元点之间所有距离的问题,使用尽可能少的位数,任意地使用小的扭曲。我们给这一问题、欧几里德指标、1美元(a.k.a.~Manhattan)指标和一般指标的界限都几乎是紧凑的。我们给欧几里德指标的界限标志着根据松散的典型维度减少强生和林登斯特劳斯理论(Contemp.~Math.~1984)分解的压缩计划的第一次改进。由于已知不可能有更好的维度减少,我们的结果证明,欧几里德指标压缩有可能超越维度的减少。