With recent advancements in aerospace technology, the volume of unlabeled remote sensing image (RSI) data has increased dramatically. Effectively leveraging this data through self-supervised learning (SSL) is vital in the field of remote sensing. However, current methodologies, particularly contrastive learning (CL), a leading SSL method, encounter specific challenges in this domain. Firstly, CL often mistakenly identifies geographically adjacent samples with similar semantic content as negative pairs, leading to confusion during model training. Secondly, as an instance-level discriminative task, it tends to neglect the essential fine-grained features and complex details inherent in unstructured RSIs. To overcome these obstacles, we introduce SwiMDiff, a novel self-supervised pre-training framework designed for RSIs. SwiMDiff employs a scene-wide matching approach that effectively recalibrates labels to recognize data from the same scene as false negatives. This adjustment makes CL more applicable to the nuances of remote sensing. Additionally, SwiMDiff seamlessly integrates CL with a diffusion model. Through the implementation of pixel-level diffusion constraints, we enhance the encoder's ability to capture both the global semantic information and the fine-grained features of the images more comprehensively. Our proposed framework significantly enriches the information available for downstream tasks in remote sensing. Demonstrating exceptional performance in change detection and land-cover classification tasks, SwiMDiff proves its substantial utility and value in the field of remote sensing.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员