The aim of this paper is to study the recovery of a spatially dependent potential in a (sub)diffusion equation from overposed final time data. We construct a monotone operator one of whose fixed points is the unknown potential. The uniqueness of the identification is theoretically verified by using the monotonicity of the operator and a fixed point argument. Moreover, we show a conditional stability in Hilbert spaces under some suitable conditions on the problem data. Next, a completely discrete scheme is developed, by using Galerkin finite element method in space and finite difference method in time, and then a fixed point iteration is applied to reconstruct the potential. We prove the linear convergence of the iterative algorithm by the contraction mapping theorem, and present a thorough error analysis for the reconstructed potential. Our derived \textsl{a priori} error estimate provides a guideline to choose discretization parameters according to the noise level. The analysis relies heavily on some suitable nonstandard error estimates for the direct problem as well as the aforementioned conditional stability. Numerical experiments are provided to illustrate and complement our theoretical analysis.
翻译:本文的目的是研究在超常最后时间数据的( 子) 扩散方程式中恢复空间依赖潜能的问题。 我们建造了一个单调操作员, 其固定点之一是未知的潜能。 识别的独特性在理论上是通过操作员的单声调和固定点参数来验证的。 此外, 在问题数据的某些适当条件下, 我们显示了希尔伯特空间的有条件稳定性。 其次, 通过在空间中使用加勒金的有限元素法和时间差异的有限方法, 开发了一个完全独立的方案, 然后在重建潜力时应用了固定的点代号。 我们用收缩绘图定点来证明迭代算法的线性趋同, 并为重建的潜力提供了彻底的错误分析。 我们得出的 \ textsl{ a prei} 错误估计为根据噪音水平选择离散参数提供了指南。 分析大量依靠一些对直接问题和上述有条件稳定性的适当的非标准错误估计。 提供了数字实验, 以说明和补充我们的理论分析。