Privacy in AI remains a topic that draws attention from researchers and the general public in recent years. As one way to implement privacy-preserving AI, differentially private learning is a framework that enables AI models to use differential privacy (DP). To achieve DP in the learning process, existing algorithms typically limit the magnitude of gradients with a constant clipping, which requires carefully tuned due to its significant impact on model performance. As a solution to this issue, latest works NSGD and Auto-S innovatively propose to use normalization instead of clipping to avoid hyperparameter tuning. However, normalization-based approaches like NSGD and Auto-S rely on a monotonic weight function, which imposes excessive weight on small gradient samples and introduces extra deviation to the update. In this paper, we propose a Differentially Private Per-Sample Adaptive Clipping (DP-PSAC) algorithm based on a non-monotonic adaptive weight function, which guarantees privacy without the typical hyperparameter tuning process of using a constant clipping while significantly reducing the deviation between the update and true batch-averaged gradient. We provide a rigorous theoretical convergence analysis and show that with convergence rate at the same order, the proposed algorithm achieves a lower non-vanishing bound, which is maintained over training iterations, compared with NSGD/Auto-S. In addition, through extensive experimental evaluation, we show that DP-PSAC outperforms or matches the state-of-the-art methods on multiple main-stream vision and language tasks.


翻译:AI 的隐私仍然是近年来引起研究人员和一般公众注意的一个话题。作为实施隐私保护AI的一个途径,差异私人学习是一个使AI模型能够使用差异隐私的框架。为了在学习过程中实现DP。为了在学习过程中实现DP,现有的算法通常会通过不断剪切来限制梯度的大小,这需要谨慎调整,因为其对于模型性能的重大影响。作为这一问题的解决方案,NSGD和Auto-S最新作品NSGD和Auto-S创新地提议使用常规化而不是剪辑来避免超度调。然而,NSGD和Auto-S等基于正常化的办法依赖于单一重量功能,对小型梯度样本施加过重,并对更新引入额外的偏差。在本文中,我们提议了一种差异性私人PSAPPSAC(DP-PSAC) 算法,它基于对模型性能的适应性能功能,保证隐私不受典型的超标度调整过程的超标度,同时大幅降低更新和真实的批量梯度偏差。我们提供了严格的理论趋同性趋同分析,并显示不比的NSAL-AD-ADADADADADAV的排序。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
13+阅读 · 2021年7月20日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员