We study Euler-type discrete-time schemes for the rough Heston model, which can be described by a stochastic Volterra equation (with non-Lipschtiz coefficient functions), or by an equivalent integrated variance formulation. Using weak convergence techniques, we prove that the limits of the discrete-time schemes are solution to some modified Volterra equations. Such modified equations are then proved to share the same unique solution as the initial equations, which implies the convergence of the discrete-time schemes. Numerical examples are also provided in order to evaluate different derivative options prices under the rough Heston model.
翻译:我们研究了粗略赫斯顿模型的Euler型离散时间计划,这种计划可以描述为随机伏特拉方程式(具有非利普施蒂兹系数功能),也可以描述为同等的综合差异配方。我们使用薄弱的趋同技术,证明离散时间计划的极限是某些修改的伏特拉方程式的解决方案。然后证明这种修改后的方程式与初始方程式有着相同的独特解决方案,这意味着离散时间计划趋同。还提供了数字实例,以便评估粗赫斯顿模式下的不同衍生选择价格。