Introduction: For supervised deep learning (DL) tasks, researchers need a large annotated dataset. In medical data science, one of the major limitations to develop DL models is the lack of annotated examples in large quantity. This is most often due to the time and expertise required to annotate. We introduce Lirot.ai, a novel platform for facilitating and crowd-sourcing image segmentations. Methods: Lirot.ai is composed of three components; an iPadOS client application named Lirot.ai-app, a backend server named Lirot.ai-server and a python API name Lirot.ai-API. Lirot.ai-app was developed in Swift 5.6 and Lirot.ai-server is a firebase backend. Lirot.ai-API allows the management of the database. Lirot.ai-app can be installed on as many iPadOS devices as needed so that annotators may be able to perform their segmentation simultaneously and remotely. We incorporate Apple Pencil compatibility, making the segmentation faster, more accurate, and more intuitive for the expert than any other computer-based alternative. Results: We demonstrate the usage of Lirot.ai for the creation of a retinal fundus dataset with reference vasculature segmentations. Discussion and future work: We will use active learning strategies to continue enlarging our retinal fundus dataset by including a more efficient process to select the images to be annotated and distribute them to annotators.
翻译:用于监管深层学习( DL) 任务, 研究人员需要一个大型附加说明的数据集。 在医学数据科学中, 开发 DL 模型的主要限制之一是缺少大量附加说明的示例。 这通常是由于注释所需的时间和专门知识。 我们引入了Lirot.ai, 一个便利和众包图像分割的新平台。 方法: Lirot. ai 由三个部分组成; 一个名为 Lirot.ai- app 的 iPadOS 客户端应用程序, 一个名为 Lirot.ai- server 的后端服务器, 一个名为 Lirot. i- server 的 Python 的 API 名称为 Lirot. ai- API 。 Lirot. App 是在 Switter 5. 和 Lirot. server 中开发的, 最经常是因为缺少附加注释的例子。 我们继续使用苹果 Pencial 的解析度, 包括更快速、 更精确的解析的解析, 和更深入地展示我们将来的解算数据。