In this paper, we propose a novel training procedure for the continual representation learning problem in which a neural network model is sequentially learned to alleviate catastrophic forgetting in visual search tasks. Our method, called Contrastive Supervised Distillation (CSD), reduces feature forgetting while learning discriminative features. This is achieved by leveraging labels information in a distillation setting in which the student model is contrastively learned from the teacher model. Extensive experiments show that CSD performs favorably in mitigating catastrophic forgetting by outperforming current state-of-the-art methods. Our results also provide further evidence that feature forgetting evaluated in visual retrieval tasks is not as catastrophic as in classification tasks. Code at: https://github.com/NiccoBiondi/ContrastiveSupervisedDistillation.
翻译:在本文中,我们提出了针对持续代表性学习问题的新培训程序,在这个程序中,神经网络模型被相继学习,以缓解视觉搜索任务中灾难性的遗忘。我们的方法叫做“对比监督蒸馏”(CSD),在学习歧视特征的同时减少特征的遗忘。这是通过在蒸馏环境中利用标签信息实现的,在这个蒸馏环境中,学生模式从教师模式中相互学习。广泛的实验表明,CSD在减轻灾难性的遗忘方面表现良好,表现优于目前最先进的方法。我们的结果还提供了进一步的证据,表明在视觉检索任务中被遗忘的特征不如分类任务那样具有灾难性。代码见:https://github.com/NiccoBiondi/ContrastationSuperedSTillation。