Curriculum learning is a learning method that trains models in a meaningful order from easier to harder samples. A key here is to devise automatic and objective difficulty measures of samples. In the medical domain, previous work applied domain knowledge from human experts to qualitatively assess classification difficulty of medical images to guide curriculum learning, which requires extra annotation efforts, relies on subjective human experience, and may introduce bias. In this work, we propose a new automated curriculum learning technique using the variance of gradients (VoG) to compute an objective difficulty measure of samples and evaluated its effects on elbow fracture classification from X-ray images. Specifically, we used VoG as a metric to rank each sample in terms of the classification difficulty, where high VoG scores indicate more difficult cases for classification, to guide the curriculum training process We compared the proposed technique to a baseline (without curriculum learning), a previous method that used human annotations on classification difficulty, and anti-curriculum learning. Our experiment results showed comparable and higher performance for the binary and multi-class bone fracture classification tasks.


翻译:课程学习是一种学习方法,它以一种有意义的方式将模型从更容易到更难的样本顺序进行有意义的培训。这里的关键是设计自动和客观的样本难度计量。在医疗领域,以前的工作应用了人类专家的域知识,从质量上评估医学图像的分类困难,以指导课程学习,这需要额外的批注努力,依靠主观的人类经验,并可能引入偏见。在这项工作中,我们提出一种新的自动化课程学习技术,使用梯度差异来计算样本的客观难度,并评估其对X光图像中肘骨折分类的影响。具体地说,我们用VoG作为衡量标准,根据分类困难对每个样本进行排序,其中高VoG分数显示更难分类的案例,指导课程培训过程。我们比较了拟议的技术与基线(不学习课程),这是以前使用人类分类困难说明和反曲线学习的方法。我们的实验结果表明,二进制和多级骨折分类任务具有可比和更高性。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
机器学习组合优化
专知会员服务
109+阅读 · 2021年2月16日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
35+阅读 · 2021年8月2日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
24+阅读 · 2021年1月25日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
机器学习组合优化
专知会员服务
109+阅读 · 2021年2月16日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员