We present a task-and-motion planning (TAMP) algorithm robust against a human operator's cooperative or adversarial interventions. Interventions often invalidate the current plan and require replanning on the fly. Replanning can be computationally expensive and often interrupts seamless task execution. We introduce a dynamically reconfigurable planning methodology with behavior tree-based control strategies toward reactive TAMP, which takes the advantage of previous plans and incremental graph search during temporal logic-based reactive synthesis. Our algorithm also shows efficient recovery functionalities that minimize the number of replanning steps. Finally, our algorithm produces a robust, efficient, and complete TAMP solution. Our experimental results show the algorithm results in superior manipulation performance in both simulated and real-world tasks.
翻译:我们提出了一个与人类操作者合作或对抗性干预相适应的任务和动作规划算法(TAMP ) 。 干预往往使目前的计划无效,需要再做规划。 重新规划可以计算费用昂贵,往往会中断无缝任务的执行。 我们引入一种动态的、可调整的规划方法,与基于行为树的控制战略相配合,以适应反应式的TAMP,利用先前的计划和在基于时间逻辑的反应性合成过程中的增量图形搜索。我们的算法还显示了有效的恢复功能,可以最大限度地减少再规划步骤的数量。 最后,我们的算法产生了一个强大、高效和完整的TAMP解决方案。 我们的实验结果显示了模拟和现实世界任务中优于操纵的算法效果。