Automated story plot generation is the task of generating a coherent sequence of plot events. Causal relations between plot events are believed to increase the perception of story and plot coherence. In this work, we introduce the concept of soft causal relations as causal relations inferred from commonsense reasoning. We demonstrate C2PO, an approach to narrative generation that operationalizes this concept through Causal, Commonsense Plot Ordering. Using human-participant protocols, we evaluate our system against baseline systems with different commonsense reasoning reasoning and inductive biases to determine the role of soft causal relations in perceived story quality. Through these studies we also probe the interplay of how changes in commonsense norms across storytelling genres affect perceptions of story quality.
翻译:自动故事情节生成是产生一系列连贯的阴谋事件的任务。 据信, 阴谋事件之间的因果关系增加了对故事和情节一致性的认识。 在这项工作中, 我们引入软因果关系的概念, 作为根据常识推理推断的因果关系。 我们展示了C2PO, 这是一种通过Causal、 常识绘图秩序来实施这个概念的叙事生成方法。 我们使用人类参与协议, 用不同常识理性推理和暗示偏见的基线系统来评估我们的系统, 以确定软因果关系在感知故事质量中的作用。 我们还通过这些研究, 探索普通常识规范的变化如何影响对故事质量的认识。