Developing classification methods with high accuracy that also avoid unfair treatment of different groups has become increasingly important for data-driven decision making in social applications. Many existing methods enforce fairness constraints on a selected classifier (e.g., logistic regression) by directly forming constrained optimizations. We instead re-derive a new classifier from the first principles of distributional robustness that incorporates fairness criteria into a worst-case logarithmic loss minimization. This construction takes the form of a minimax game and produces a parametric exponential family conditional distribution that resembles truncated logistic regression. We present the theoretical benefits of our approach in terms of its convexity and asymptotic convergence. We then demonstrate the practical advantages of our approach on three benchmark fairness datasets.


翻译:制定高度精确的分类方法,避免对不同群体不公平对待,对于社会应用中的数据驱动决策已变得日益重要。许多现有方法通过直接形成限制优化,对选定的分类者(如后勤回归)实行公平限制。我们改用分配稳健原则,将公平标准纳入最差的对数损失最小化。这种构建以迷你马克思游戏的形式进行,并产生类似于快速后勤回归的参数指数家庭有条件分布。我们介绍了我们方法的理论优势,即其共性与零食趋同。然后我们展示了我们在三个基准公平数据集上的做法的实际优势。

0
下载
关闭预览

相关内容

【NeurIPS2020】基于能量的分布外检测
专知会员服务
13+阅读 · 2020年10月10日
【ICLR2020-Facebook AI】张量分解的时序知识图谱补全
专知会员服务
58+阅读 · 2020年4月14日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2020年11月30日
Arxiv
0+阅读 · 2020年11月28日
Arxiv
0+阅读 · 2020年11月28日
Arxiv
0+阅读 · 2020年11月26日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Arxiv
9+阅读 · 2018年3月28日
VIP会员
相关VIP内容
【NeurIPS2020】基于能量的分布外检测
专知会员服务
13+阅读 · 2020年10月10日
【ICLR2020-Facebook AI】张量分解的时序知识图谱补全
专知会员服务
58+阅读 · 2020年4月14日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员