We describe a new method for the random sampling of connected networks with a specified degree sequence. We consider both the case of simple graphs and that of loopless multigraphs. The constraints of fixed degrees and of connectedness are two of the most commonly needed ones when constructing null models for the practical analysis of physical or biological networks. Yet handling these constraints, let alone combining them, is non-trivial. Our method builds on a recently introduced novel sampling approach that constructs graphs with given degrees independently (unlike edge-switching Markov Chain Monte Carlo methods) and efficiently (unlike the configuration model), and extends it to incorporate the constraint of connectedness. Additionally, we present a simple and elegant algorithm for directly constructing a single connected realization of a degree sequence, either as a simple graph or a multigraph. Finally, we demonstrate our sampling method on a realistic scale-free example, as well as on degree sequences of connected real-world networks, and show that enforcing connectedness can significantly alter the properties of sampled networks.
翻译:我们描述对具有特定度序列的连接网络进行随机抽样的新方法。 我们既考虑简单的图表,也考虑无环的多面图。 固定度和连通性的限制是建造物理或生物网络实际分析的空模型时最通常需要的两种限制。 然而,处理这些限制,更不用说将两者结合在一起,是非三重的。 我们的方法基于最近采用的新颖的抽样方法,即独立和高效地(与配置模型不同)地(与边缘开动的Markov链条蒙特卡洛方法不同)地(与配置模型不同)地(与配置模型不同)地(与配置模型不同)地(与配置模型不同)地)地构建图表,并将之扩展至包含连接性的限制。 此外,我们提出一种简单度序列直接构建单一连通的实现度序列的简单和多面图的简单和优雅的算法。 最后,我们将我们的取样方法展示为现实的无规模的例子,以及连接的实际世界网络的度序列,并表明强制连接可以显著地改变抽样网络的特性。