Automated airway segmentation is a prerequisite for pre-operative diagnosis and intra-operative navigation for pulmonary intervention. Due to the small size and scattered spatial distribution of peripheral bronchi, this is hampered by severe class imbalance between foreground and background regions, which makes it challenging for CNN-based methods to parse distal small airways. In this paper, we demonstrate that this problem is arisen by gradient erosion and dilation of the neighborhood voxels. During back-propagation, if the ratio of the foreground gradient to background gradient is small while the class imbalance is local, the foreground gradients can be eroded by their neighborhoods. This process cumulatively increases the noise information included in the gradient flow from top layers to the bottom ones, limiting the learning of small structures in CNNs. To alleviate this problem, we use group supervision and the corresponding WingsNet to provide complementary gradient flows to enhance the training of shallow layers. To further address the intra-class imbalance between large and small airways, we design a General Union loss function which obviates the impact of airway size by distance-based weights and adaptively tunes the gradient ratio based on the learning process. Extensive experiments on public datasets demonstrate that the proposed method can predict the airway structures with higher accuracy and better morphological completeness than the baselines.


翻译:自动空气路隔断是手术前诊断和手术内导航进行肺部干预的先决条件。由于外围支气管面积小,空间分布分散,外围支气管面积小,因此受到地表和背景区域之间严重舱位不平衡的阻碍,这使得CNN以CNN为基础的方法分析偏小小气道具有挑战性。在本文中,我们证明这一问题是生长梯度侵蚀和邻区毒气变异现象造成的。在后推进期间,如果地表梯度与本底梯度之比小,而舱层不平衡是局部的,则地表梯度可能会受到其邻居的侵蚀。这一过程累积增加了地表层与底区域之间的梯度流动所包括的噪音信息,限制了CNNN的小型结构的学习。为了缓解这一问题,我们利用集体监督和相应的翼网来提供补充性梯度流,以加强浅层的培训。为了进一步解决大型和小型航道之间的班级不平衡问题,我们设计了一个普通联盟损失功能,从而避免了空道尺寸因远距离重量和适应性偏差而受到其邻居的侵蚀。这个过程累积增加了从上层向层流流流流流到底层流到底区域之间的偏差比率,从而使得CNCNCNCNCNCNCNN能够用拟议的渐变精确率率率率比率能够以更精确性地试验在学习的基础上展示地试验,从而显示更精确性地试验能够以更精确性地展示地基基基基地试验,从而显示对空基进行更精确性地试验。根据学习方法对空基地试验。根据学习过程的精确性试验,以更深入地基进行。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
专知会员服务
45+阅读 · 2020年10月31日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
62+阅读 · 2020年2月17日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
278+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月16日
UPSNet: A Unified Panoptic Segmentation Network
Arxiv
4+阅读 · 2019年1月12日
Arxiv
3+阅读 · 2018年5月20日
Arxiv
3+阅读 · 2018年3月5日
VIP会员
相关VIP内容
专知会员服务
45+阅读 · 2020年10月31日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
62+阅读 · 2020年2月17日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
278+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员