The linear fractional stable motion generalizes two prominent classes of stochastic processes, namely stable L\'evy processes, and fractional Brownian motion. For this reason it may be regarded as a basic building block for continuous time models. We study a stylized model consisting of a superposition of independent linear fractional stable motions and our focus is on parameter estimation of the model. Applying an estimating equations approach, we construct estimators for the whole set of parameters and derive their asymptotic normality in a high-frequency regime. The conditions for consistency turn out to be sharp for two prominent special cases: (i) for L\'evy processes, i.e. for the estimation of the successive Blumenthal-Getoor indices, and (ii) for the mixed fractional Brownian motion introduced by Cheridito. In the remaining cases, our results reveal a delicate interplay between the Hurst parameters and the indices of stability. Our asymptotic theory is based on new limit theorems for multiscale moving average processes.
翻译:线性稳定微量运动将两种突出的随机过程,即稳定的 L\'evy 过程和分形的布朗运动,统称为两个突出的类别,即稳定的 L\'evy 过程和分形的布朗运动。为此原因,它可被视为连续时间模型的基本基石。我们研究的是由独立线性分数稳定运动的叠加组成的标准模型,我们的重点是模型的参数估计。我们应用了估算方程方法,为整个参数组构建了估计器,并在高频系统中得出其无症状的正常状态。对于两个突出的特例来说,一致性的条件变得尖锐:(一) L\'evy 过程,即对连续的Blumenthal-Getoor指数进行估计,以及(二) Cheridito 引入的混合分数布朗运动。在其余情况下,我们的结果揭示了赫斯特参数和稳定性指数之间的微妙相互作用。我们无症状理论基于多级移动平均过程的新限的理论。