Accurate, continuous out-of-hospital electrocardiogram (ECG) parameter measurement is vital for real-time cardiac health monitoring and telemedicine. On-device computation of single-lead ECG parameters enables timely assessment without reliance on centralized data processing, advancing personalized, ubiquitous cardiac care-yet comprehensive validation across heterogeneous real-world populations remains limited. This study validated the on-device algorithm FeatureDB (https://github.com/PKUDigitalHealth/FeatureDB) using two datasets: HeartVoice-ECG-lite (369 participants with single-lead ECGs annotated by two physicians) and PTB-XL/PTB-XL+ (21,354 patients with 12-lead ECGs and physicians' diagnostic annotations). FeatureDB computed PR, QT, and QTc intervals, with accuracy evaluated against physician annotations via mean absolute error (MAE), correlation analysis, and Bland-Altman analysis. Diagnostic performance for first-degree atrioventricular block (AVBI, PR-based) and long QT syndrome (LQT, QTc-based) was benchmarked against commercial 12-lead systems (12SL, Uni-G) and open-source algorithm Deli, using AUC, accuracy, sensitivity, and specificity. Results showed high concordance with expert annotations (Pearson correlations: 0.836-0.960), MAEs matching inter-observer variability, and minimal bias. AVBI AUC reached 0.787 (12SL: 0.859; Uni-G: 0.812; Deli: 0.501); LQT AUC was 0.684 (12SL: 0.716; Uni-G: 0.605; Deli: 0.569)-comparable to commercial tools and superior to open-source alternatives. FeatureDB delivers physician-level parameter accuracy and commercial-grade abnormality detection via single-lead devices, supporting scalable telemedicine, decentralized cardiac screening, and continuous monitoring in community and outpatient settings.
翻译:暂无翻译