We present a general Fourier analytic technique for constructing orthonormal basis expansions of translation-invariant kernels from orthonormal bases of $\mathscr{L}_2(\mathbb{R})$. This allows us to derive explicit expansions on the real line for (i) Mat\'ern kernels of all half-integer orders in terms of associated Laguerre functions, (ii) the Cauchy kernel in terms of rational functions, and (iii) the Gaussian kernel in terms of Hermite functions.
翻译:我们提出了一个一般的Fourier分析技术,用于从正正态基数$\mathscr{L ⁇ 2(\mathb{R}$的正态基数中构建正态变换内核的扩展。 这使我们能够在(一) 半整数所有半整数指令的马特内核在相关的拉盖尔功能方面获得明确的扩展,(二) 从合理功能方面看孔内核,以及(三) 从赫尔米特功能方面获得高森内核的明显扩展。