Hawkes processes are a self-exciting stochastic process used to describe phenomena whereby past events increase the probability of the occurrence of future events. This work presents a flexible approach for modelling a variant of these, namely discrete-time Hawkes processes. Most standard models of Hawkes processes rely on a parametric form for the function describing the influence of past events, referred to as the triggering kernel. This is likely to be insufficient to capture the true excitation pattern, particularly for complex data. By utilising trans-dimensional Markov chain Monte Carlo inference techniques, our proposed model for the triggering kernel can take the form of any step function, affording significantly more flexibility than a parametric form. We first demonstrate the utility of the proposed model through a comprehensive simulation study. This includes univariate scenarios, and multivariate scenarios whereby there are multiple interacting Hawkes processes. We then apply the proposed model to several case studies: the interaction between two countries during the early to middle stages of the COVID-19 pandemic, taking Italy and France as an example, and the interaction of terrorist activity between two countries in close spatial proximity, Indonesia and the Philippines, and then within three regions of the Philippines.
翻译:霍克斯进程是一个自我激发的随机过程,用来描述过去事件增加未来事件发生概率的现象。这项工作为模拟这些变体,即离散时间的霍克斯进程提供了一个灵活的方法。大多数霍克斯进程的标准模型都依靠一种参数形式来描述过去事件的影响,称为触发内核。这很可能不足以捕捉真正的引力模式,特别是复杂的数据。通过利用跨维马尔科夫链子蒙特卡洛推断技术,我们提议的触发内核模式可以采取任何步骤功能的形式,比参数形式具有更大的灵活性。我们首先通过全面模拟研究来展示拟议模式的效用,其中包括单向情景和多变式情景,其中存在多重相互作用的霍克斯进程。我们然后将拟议的模型应用于几个案例研究:以意大利和法国为例,在COVID-19大流行的早期阶段至中间阶段,两个国家之间的互动,以及印度尼西亚和菲律宾三个地区之间的空间活动相互作用。