Localization is a crucial capability for mobile robots and autonomous cars. In this paper, we address learning an observation model for Monte-Carlo localization using 3D LiDAR data. We propose a novel, neural network-based observation model that computes the expected overlap of two 3D LiDAR scans. The model predicts the overlap and yaw angle offset between the current sensor reading and virtual frames generated from a pre-built map. We integrate this observation model into a Monte-Carlo localization framework and tested it on urban datasets collected with a car in different seasons. The experiments presented in this paper illustrate that our method can reliably localize a vehicle in typical urban environments. We furthermore provide comparisons to a beam-end point and a histogram-based method indicating a superior global localization performance of our method with fewer particles.
翻译:本地化是移动机器人和自主汽车的关键能力。 在本文中, 我们用 3D LiDAR 数据 学习蒙特- Carlo 本地化的观测模型。 我们提出一个新的神经网络观测模型, 计算两个 3D LiDAR 扫描的预期重叠。 该模型预测了当前传感器读数和预建地图产生的虚拟框架之间的重叠和斜线角。 我们将这一观测模型纳入蒙特- Carlo 本地化框架, 并在不同季节用一辆汽车收集的城市数据集中测试该模型。 本文中介绍的实验表明, 我们的方法可以可靠地将一辆汽车在典型的城市环境中本地化。 我们还提供比对一个光子端点和直方图方法的比较, 表明我们的方法在使用较少的粒子的情况下具有更好的全球本地化性表现。