This article introduces a novel communication paradigm for the unsourced, uncoordinated Gaussian multiple access problem. The major components of the envisioned framework are as follows. The encoded bits of every message are partitioned into two groups. The first portion is transmitted using a compressive sensing scheme, whereas the second set of bits is conveyed using a multi-user coding scheme. The compressive sensing portion is key in sidestepping some of the challenges posed by the unsourced aspect of the problem. The information afforded by the compressive sensing is employed to create a sparse random multi-access graph conducive to joint decoding. This construction leverages the lessons learned from traditional IDMA into creating low-complexity schemes for the unsourced setting and its inherent randomness. Under joint message-passing decoding, the proposed scheme offers comparable performance to existing low-complexity alternatives. Findings are supported by numerical simulations.


翻译:本条为无源、不协调的高斯多重访问问题引入了新的通信模式。 设想框架的主要组成部分如下。 每条电文的编码比特被分成两组。 第一部分是使用压缩传感器传输的, 第二组比特则使用多用户编码方案传递。 压缩感应部分是回避问题无源方面所构成的一些挑战的关键。 压缩感应所提供的信息被用来创建一种稀有的随机多存图,有利于联合解码。 这一构造利用传统IDMA所吸取的经验教训为无源环境及其固有的随机性创建低兼容性计划。 在联合信息通路解码方案下,拟议方案提供了与现有低兼容性替代方法相似的性能。 数据模拟为调查结果提供了支持。

0
下载
关闭预览

相关内容

压缩感知是近年来极为热门的研究前沿,在若干应用领域中都引起瞩目。 compressive sensing(CS) 又称 compressived sensing ,compressived sample,大意是在采集信号的时候(模拟到数字),同时完成对信号压缩之意。 与稀疏表示不同,压缩感知关注的是如何利用信号本身所具有的稀疏性,从部分观测样本中恢复原信号。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
必读的7篇 IJCAI 2019【图神经网络(GNN)】相关论文
专知会员服务
91+阅读 · 2020年1月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Arxiv
19+阅读 · 2020年7月13日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Top
微信扫码咨询专知VIP会员